

Dr : Mohamed Ahmed Ebrafim

Benha University
 Faculty of Engineering at Shoubra
 Electrical Engineering Dept.

Postgraduate (Pre-master) Course

\square Chapter 1:
Transmission Line Constants

- Chapter 2:

Transmission Line Models and Calculations

- Chapter 3:

Mechanical Design of Overhead T.L

- Chapter 4:
D.C. power Transmission Technology

Chapter 1:

Transmission Line Constants

Inductance of stranded conductors

$$
\begin{aligned}
& L=2 * 10^{-7} \ln \frac{D_{m}}{D_{s}} \\
& D_{s}=\sqrt[(3)^{2}]{r \cdot 2 r .2 r \cdot 2 r \cdot r \cdot 2 r .2 r \cdot r \cdot 2 r .2 r}=\sqrt{(2 r)^{6} \cdot(r)^{3}} \\
& D_{s}=\sqrt[9]{(2 r)^{6} \cdot\left(r e^{-0.25}\right)^{3}} \quad \text { where, } \mathrm{r}=\mathrm{re}^{-0.25} \\
& D_{m}=\sqrt[3]{2 r .2 r .2 r}=2 r
\end{aligned}
$$

Case 2: 7-strand cable

$$
L=2 * 10^{-7} \ln \frac{D_{m}}{D_{s}}
$$

H / m

To get D_{s} we have 24 terms of $2 r$, 12 terms of $2 \sqrt{3 r}$ 6 terms of 4 r , and 7 terms of r .

$$
D_{s}=\sqrt[(7)^{2}]{\left(r e^{-0.25}\right)^{7}(2 r)^{24}(2 / \sqrt{3 r})^{12}(4 r)^{6}}
$$

Self-GMD of Composite Stranded Conductors

Two-stranded Composite conductor
 $$
\left.D_{s}=\sqrt[(1+c))^{2}\right]{(2 r)^{2 c}\left(r e^{-0.25}\right)^{1+c^{2}}}
$$

Seven-stranded Composite conductor

$$
D_{S}=\sqrt[(6+c)^{2}]{\left(2 r * 6^{1 / 5}\right)^{30} *(2 r)^{12 c} *\left(r e^{-0.25}\right)^{\left(6+c^{2}\right)}}
$$

Inductance of a Three-Phase Line:

(a) balanced Three-Phase Line:

$$
\begin{aligned}
\lambda_{a} & =2 * 10^{-7}\left(I_{a} \ln \frac{1}{D_{s}}+I_{b} \ln \frac{1}{D}+I_{c} \ln \frac{1}{D}\right. \\
I_{a} & \left.+I_{b}+I_{c}=0 \quad \text { (balanced }\right) \\
\lambda_{a} & =2 * 10^{-7}\left(I_{a} \ln \frac{1}{D_{s}}-I_{a} \ln \frac{1}{D}\right) \\
& =2 * 10^{-7} I_{a} \ln \frac{D}{D_{s}} \\
L_{a} & =\frac{\lambda_{a}}{I_{a}}=2 * 10^{-7} \ln \frac{D}{D_{s}} \quad \mathrm{H} / \mathrm{m}
\end{aligned}
$$

Continue

$$
\begin{aligned}
& L_{t}=L_{a}+L_{b}+L_{c}=3 L_{a} \quad(\text { balanced and identical }) \\
& X_{l t}=2 \pi f L_{t} \quad \Omega
\end{aligned}
$$

(b) Unbalanced Three-Phase Line

If the spacing of the transmission line conductors is not symmetrical, the linkages for different conductors would be different and unbalanced voltages would be produced under loading conditions.

Continue

The unbalanced condition causes unequal reactances Which cause inductive interference with parallel communication circuits and also result in unbalanced-phase charging currents .
T_{0} reduce these effects, the three-phase line with unequal spacing are transposed.

$$
\lambda_{a}=2 * 10^{-7} I_{a} \ln \frac{\sqrt[3]{D_{a b} D_{b c} D_{c a}}}{D_{s}} \text { Linkages } / \mathrm{m}
$$

Continue

$$
\begin{aligned}
& L_{a}=2 * 10^{-7} \ln \frac{\sqrt{D_{a b} D_{b c} D_{c a}}}{D_{s}} \\
& L_{a}=2 * 10^{-7} \ln \frac{D_{m}}{D_{s}}
\end{aligned}
$$

Arrangement of three-phase line with 3 parallel conductors in each phase,
D_{s} of $A=\sqrt[(3)^{2}]{r_{a 1} \cdot D_{a 1 a 2} \cdot D_{a 1 a 3} \cdot r_{a 2} \cdot D_{a 2 a 1} \cdot D_{a 2 a 3} \cdot r_{a 3} \cdot D_{a 3 a 1} \cdot D_{a 3 a 2}}$

Continue

$$
D_{s} o f B=\sqrt\left[(3 * 3]{ } \sqrt{r_{b 1} \cdot D_{b 1 b 2} \cdot D_{b 1 b 3} r_{b} \cdot D_{b 2 b 1} D_{b 2 b 3} r_{b 3} \cdot D_{b 3 b 1} \cdot D_{b 3 b 2}}\right.
$$

Using the same procedure to obtain D_{S} of C.
$D_{A B}=\sqrt\left[\left(3^{* 3} 3\right]{D_{a 1 b 1} \cdot D_{a 1 b 2} \cdot D_{a 1 b 3} \cdot D_{a 2 b 1} \cdot D_{a 2 b 2} \cdot D_{a 2 b 3} \cdot D_{a 3 b 1} \cdot D_{a 3 b 2} \cdot D_{a 3 b 3}}\right.$
$D_{B C}=\sqrt[\left(3^{* 3}\right)]{D_{b 1 c 1} \cdot D_{b 1 c 2} \cdot D_{b 1 c 3} \cdot D_{b 2 c 1} \cdot D_{b 2 c 2} \cdot D_{b 2 c 3} \cdot D_{b 3 c 1} \cdot D_{b 3 c 2} \cdot D_{b 3 c 3}}$

Continue

Using the same procedure to obtain $D_{c a}$

$$
D_{m}=\sqrt[3]{D_{a b} D_{b c} D_{c a}}
$$

If the system is fully transposed,

$$
\begin{aligned}
& D_{m}=\sqrt[3]{D_{a b} D_{b c} D_{c a}} \\
& X=2 \pi L L \quad \Omega / \text { phase }
\end{aligned}
$$

Capacitance of O.H.T.L

If the conductor has change $\mathrm{q} \mathrm{C} / \mathrm{m}$, then, the dielectric flux density D at a distance Xm is,

$$
D=\frac{q}{2 \pi X} \quad C / m^{2}
$$

$>$ Area which total flux passes being $2 \pi X \quad \mathrm{~m}^{2}$
$>$ Unit change situated in a field of unit electric flux Density in air its force is,

$$
36 \pi * 10^{9} \quad \mathrm{~V} / \mathrm{m}
$$

Continue

The voltage gradient is given by,

$$
\frac{d E}{d X}=36 \pi * 10^{3} \quad D=36 \pi * 12^{3} * \frac{q}{2 \pi X}=18 * 10^{3} \frac{q}{X} \quad \mathrm{~V} / \mathrm{m}
$$

Then,

$$
\begin{aligned}
V_{A B} & =\int_{d E}^{d X}=\int_{A}^{B} 18 * 10^{9} \frac{q}{X} d X=18 * 12^{9} q \ln \int_{A}^{B}=18 * 10^{9} q \ln \frac{B}{A} \\
E_{a n} & =18 * 10^{9} \sum_{k=a}^{n} q_{k} \ln \frac{D_{k n}}{D_{k a}} \\
C & =\frac{q}{E} \quad \text { farad }
\end{aligned}
$$

Capacitance of Two Parallel Conductors

$$
\begin{aligned}
E_{A B} & =18 * 10^{9}\left(q_{A} \ln \frac{D}{r}-q_{B} \ln \frac{D}{r}\right) \\
& =18 * 10^{9}\left(q_{A} \ln \frac{D}{r}+q_{B} \ln \frac{D}{r}\right) \\
& =18 * 10^{9}\left(2 q_{A} \ln \frac{D}{r}\right) \\
E_{A B} & =36 * 10^{9} q_{A} \ln \frac{D}{r}
\end{aligned}
$$

Continue

$$
\begin{aligned}
& C_{A B}=\frac{q_{A}}{E_{A B}}=\frac{q_{A}}{36^{*} 10^{9} q_{A} \ln \frac{D}{r}} \\
& C_{A B}=\frac{1}{36 * 10^{9} \operatorname{Ln} \frac{D}{r}} \\
& C_{A N}=\frac{q_{A}}{E_{A B} / 2}=\frac{1}{18 * 10^{9} \ln \frac{D}{r}}
\end{aligned}
$$

Capacitance of Three-Phase Line

(a) Balanced Three-Phase Line

$$
\begin{aligned}
& E_{A N}=E_{B N}=E_{C N} \\
& q_{A}+q_{B}+q_{c}=0 \\
& C_{A N}=C_{B N}=C_{C N} \\
& C_{A N}=\frac{1}{18 * 10^{9} \ln \frac{D}{r}}
\end{aligned}
$$

Dr : Mohamed Ahmed Ebrafim

(b) Unbalanced Three-Phase Line

$$
\begin{aligned}
& D_{m}=\sqrt[3]{D_{A B} D_{B C} D_{C A}} \\
& \text { Capacitance of a Single-Phase Line with Earth Return } \\
& C_{A N}=\frac{1}{18 * 10^{9} \ln \frac{2 h}{r}} \quad \mathrm{~F} / \mathrm{m}
\end{aligned}
$$

Capacitance of Multi-Circuit Three-Phase Line

$$
\begin{aligned}
& \mathrm{Ph}(1) \ldots . . . \mathrm{aa}^{\prime} \\
& \mathrm{Ph}(2) \ldots \ldots . \mathrm{bb} \\
& \mathrm{Ph}(3) \ldots . . \mathrm{cc} \\
& C_{A N}=\frac{1}{18 * 10^{9} L n \frac{D_{m}}{D_{s}}} \\
& D_{m}=\sqrt[3]{D_{A B} D_{B C} D_{C A}}
\end{aligned}
$$

Continue

$$
\begin{aligned}
D_{A B} & =\sqrt[2 * 2]{D_{a b} D_{a b^{\prime}} D_{a^{\prime} b} D_{a^{\prime} b^{\prime}}} \\
& =\sqrt[4]{D \cdot \sqrt{3} D \cdot \sqrt{3} D \cdot D}=(3)^{1 / 4} D \\
D_{B C} & =\sqrt[2 * 2]{D_{b c} \cdot D_{b c^{\prime}} D_{b^{\prime} c} D_{b^{\prime} c^{\prime}}} \\
& =\sqrt[4]{\sqrt{3} D \cdot D \cdot D \cdot \sqrt{3} D}=(3)^{1 / 4} D
\end{aligned}
$$

Using the same procedure to obtain D_{CA}

Continue

$$
\begin{aligned}
D_{s} \text { of } A & =\sqrt[(2)^{2}]{r_{a} D_{A A^{\prime}} \cdot r_{a^{\prime}} D_{A^{\prime} A}} \\
& =\sqrt[4]{r^{2}(2 D)(2 D)}=\sqrt{(2 D) r}
\end{aligned}
$$

Using the same procedure to obtain SGMD of circuit B, and C.

Comparison of Relations for Inductance and Capacitance

The term $\frac{D_{m}}{D_{s}}$ appears in inductance and capacitance
Such that, for inductance, $\quad r=r e^{-0.25}$
for capacitance, $\quad r=r \quad$ (conductor radius)
$L * C=\frac{1}{9 * 10_{16}}=\frac{1}{V^{2}}$
Where, V : velocity of light
\because Capacitive reactonce $\mathrm{X}_{\mathrm{c}}=\frac{1}{2 \pi f C}$
the charging current/phase $=\frac{\mathrm{V}}{\mathrm{X}_{\mathrm{c}}}=\mathrm{V} * 2 \pi \mathrm{fc}$

With Our Best Wishes

Transmission and Distribution of Electrical Power Course Staff

